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The Basics

We no longer assume that the game is zero sum, or even
constant sum. All players will have their own individual payoff
matrix and the goal of maximizing their own individual payoff.

— Suppose that the payoff matrices are

ayy a2 v Oy by1 b2 o bim
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— In a zero sum game we always had @;; + b;; =0, or a;; + b;; =k
where k is a fixed constant, but now in a nonzero sum game we do not
assume that.



The Basics

— The payoff when player | plays row i and player Il plays column j is now
a pair of numbers (a;;.b,;), where the first component is the payoff to
player | and the second number is the payoff to player Il.

— The individual rows and columns are called pure strategies for the
players.

— Every zero sum game can be put into the bimatrix framework by taking
B=-A, so this is true generalization of the theory in the first chapter.



Example 3.1

 Two students have an exam tomorrow. They can choose to

study, or go to a party. The payoff matrices, written together
as a bimatrix, are given by

I/IT | Study Party
Study | (2,2) (3,1)
Party | (1,3) (4,-1)

— A mixed strategy for playerlis X = (&y.,..... r,) € S, withx; >0,
the probability that player | uses row i, andso x; + 1o + --- + x,, = 1.
Similarly for player Il, Y = (y1.....ym) € S,,, with y; > 0 and

1+ +ymn = 1.

— Expected payoffs -
E(X.Y) = XAY" for player,

Fu(X,Y) = XBY7 for playerII.
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Nash Equilibrium

o Definition 3.1.1 A pair of mixed strategies (X~ € S,,.Y " € S,,) is a Nash equi-
librium if E{(X.Y ") < E/ (X", Y") for every mixed X € S,, and Ey(X*,Y) <
FEo( X" Y7 forevery mixed Y € S,,. If (X", Y 7) is a Nash equilibrium we denote
by va = E/(X".Y")and vy = Ey(X"*.Y") as the optimal pavoff to each player.
Written out with the matrices, (X *. Y ") is a Nash equilibrium if

E(X*Y") = X AV > XAY"! — E(X.Y"), forevery X € S,,.
En(X*.Y") = X"BY"" > X"BY" = E,(X".Y). foreveryY € S,,,.

— Neither player can gain any expected payoff if either one chooses to
deviate from playing the Nash equilibrium, assuming that the other
player is implementing his or her piece of the Nash equilibrium.

— Each strategy in a Nash equilibrium is a best response strategy against
the opponent's Nash strategy.
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Best Response Strategy

e Definition 3.1.2 A strategy X' € S, is a best response strategy ro a given strategy
Y'Y € S, for plaver 11, if

E(X". YY) max E(X.Y"Y).
XNes,
Similarly, a strategy Y € S, is a best response strategy to a given strategy
XY e S, for plaver I, if

Eu(X". YY) = Imax Eu(XY.Y).

}r{_‘ 'HHJ

— X" isabestresponse to Y " and Y " is a best response to X *.

— If B = - A, a bimatrix game is a zero sum two-person game and a
Nash equilibrium is the same as a saddle point in mixed strategies.
e F(X.Y)=XAY"' En(X.Y).
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A Nash Equilibrium in Pure Strategies

In the bimatrix game a Nash equilibrium in pure strategies
must be the pair that is, the largest first component in the
column and the largest second component in the row.

— A Nash equilibrium in pure strategies will be a row i* and column j*
satisfying
ajj- < @pj» and bje; < bej-ii=1..... n.g=1.....m.
— a,- ;- is the largest number in column j* and b;- ;- is the largest number

In row " .



A Nash Equilibrium in Pure Strategies (conta)

e Strategies and payoffs

— If player | uses the pure strategy row i, and player Il uses the mixed
strategy Y, then the expected payoffs to each player are

Ei(i,Y) = ;AYT and Ey(i,Y)=,BY".

— If player Il uses the pure strategy column j, and player | uses the mixed
strategy X, then the expected payoffs to each player are

Ev(X.j)= XA, and Ey(X,j) = XB,.

e (Questions for a given bimatrix game
— Is there a Nash equilibrium using pure strategies?
— Is there a Nash equilibrium using mixed strategies? More than one?
— How to compute these?



Prisoner's Dilemma

 Two criminals have just been caught after committing a crime.
The police interrogate the prisoners by placing them in
separate rooms so that they cannot communicate and
coordinate their stories. The goal of the police is to try to get
one or both of them to confess to having committed the
crime. We consider the two prisoners as the players in a game
in which they have two pure strategies: confess, or don't
confess. The following matrix represents the possible payoffs.

Prisoner I/11 ‘ Confess Don’t confess

Confess (-5, —5) (0, —20)
Don’t confess | (—20,0) (—1,-1)




Prisoner's Dilemma (cont)

— The individual matrices for the two prisoners are

-5 0 -5 20
A= [—-zn 1} . B= [n 11 |

— The numbers are negative because they represent the number of
prison sentence and each player wants to maximize the payoff.

e Systematic way to find the payoff pair (a,b)
— Put a bar over the first number that is the largest in each column and
put a bar over the second number that is the largest in each row.

— Any pair of numbers that both have bars is a Nash equilibrium in pure
strategies.




Prisoner's Dilemma (cont)

- Prisoner I/11 ‘ Confess Don’t confess
Confess | (=5, —5) (ﬁ, —20)
Don’t confess (—20.0) (—1,-1)

— There is exactly one pure Nash equilibrium at (confess, confess),
where the payoff pair (-5, -5) is stable because neither player can
improve their own individual payoff if they both play it.

— The players are rewarded for a betrayal of the other prisoner, and so
that is exactly what will happen.
* This reveals a major reason why conspiracies almost always fail.

— The payoff pair (-1, -1) is unstable in the sense that a player can do
better by deviating, assuming that the other player does not.



Prisoner's Dilemma (cont)

— Whereas the payoff pair (-5,-5) is stable because neither player can
improve their own individual payoff if they both play it.

— The Nash equilibrium is self-enforcing.

* |t would take extraordinary with power for both players to stick with that
agreement in the face of the numbers.

— This problem can be solved by domination.
* For player |, row 1 strictly dominates row 2.
* For player Il, column 1 strictly dominates column 2.



Example 3.2

 Go back to the study-party game and change one number:

I/11 Study

Party

Study | | (2.2)

(3,1)

Party | (1.3) | (4, 4)

— There are Nash equilibria at payoff (2,2) and at (4,4).
— A bimatrix game can have more than one Nash equilibrium!
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Example 3.3

 The Arms Race. Suppose that two countries have the choice
of developing or not developing nuclear weapons. There is a
cost of the development of the weapons in the price that the
country might have to pay in sanctions, and so forth. But
there is also a benefit in having nuclear weapons in prestige,
defense, deterrence, and so on. We quantify the game using a
bimatrix in which each player wants to maximize the payoff.

Country I/ Il | Nuclear  Conventional

Nuclear (1.1) (10. —=5)

Conventional | (—5.10) (1.1)



Examp|e 33 (cont’d)

— There is a Nash equilibrium at the pair (1,1) corresponding to the
strategy (nuclear, nuclear).

— The pair (1,1) when both countries maintain conventional weapons is
not a Nash equilibrium because each player can improve its own
payoff by unilaterally deviating from this.

— Once one government obtains nuclear weapons, it is a Nash

equilibrium-and self-enforcing equilibrium-for opposing countries to
also obtain the weapons.



Example 3.4

* Consider the game with matrix

(2,0) (1,3)
(0,1) (3.0)]
— There is no pair (g, b) in which a is the largest in the column and b is
the largest in the row.

— Not all bimatrix games have Nash equilibrium in pure strategies!
— It seems reasonable that we use mixed strategies.

— Even though a game might have pure strategy Nash equilibria, it could
also have a mixed strategy Nash equilibrium.



Safety Value

e Definition 3.1.3 Consider the bimatrix game with matrices (A. B). The safety value
for player I is value(A). The safety value for player Il in the bimatrix game is
value(BT).

If A has the saddle point (X, Y ), then X is called the maxmin strategy for
player L

If BT has saddle point (XB" YB"), then XB" is the maxmin strategy for
player I1..

— The safety levels are the guaranteed amounts each player can get by
using their own individual maxmin strategies, so any rational player
must get at least the safety level in a bimatrix game.
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Safety Value (conra)

 Example: In the game with matrix

(2,0) (1.3)
0,1) (3,0)|
we have 2 11 . [0 1
A= [n (B = {3 U]'

— v(A) = 3 is the safety value for player | and v(B") = § is the safety

value for player II.

— The maxmin strategy for player I is X = (—f %). so if player | uses
X = (-} %), then F1(X.Y) > v(A) = %’ no matter what Y strategy is used .
. 3 1 ) 3 5 . :
E) ((1 1) Y ) = E(yl +y2) = 5" for any strategy } (y1.y2).

. S . BT : : 1
— The maxmin strategy for player Ilis Y = XB = (1.3) withsafety 7
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Safety Value (contq)

* Individually rational

It has to be true that if (X*.Y™) is a Nash equilibrium for the
bimatrix game (A, B), then

E\(X*.Y") = X"AY"" > value(A) and Ey(X*,Y") = X*BY™" > value(B").

— In the bimatrix game, if players use their Nash points, they get at least
their safety levels.
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Safety Value (conra)

e  Proof. It’s really just from the definitions. The definition of Nash equilibrium
says

EVX*.Y") = X AY* > Ei(X.Y") = XAY*" forall X € S,,.
But if that is true for all mixed X. then

EdX* Y") > max XAY*!' > min max XAY' = value(A).
: ’ X ~ YeS, X€S
JPE'-E;;H. .E;l-\".r}r. E'--ITJ.

The other part of a Nash definition gives us
En(X*,Y") = X*BY™" > max X*"BY"'
YeSs,,

= max y BT X+ (since X*BYT =YB"X*")
nax

> min max Y B! X! = value(B").
XeS, YeESH

Each player does at least as well as assuming the worst. L
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2 X 2 Bimatrix Games



Two-Person 2 x 2 Nonzero Sum Games

 Mixed strategies
— Let X = (2.1 —2),Y = (y.1 —y),0< 2 <1,0<y < 1be mixed
strategies for players I and Il respectively.

— Expected payoffs

E(X.Y)=XAYT = (4. 1 — 1) |1 ”1:} [I Y J

a2y a2
Y
| — y

— Itis the goal of each player to maximize her own expected payoff
assuming that the other player is doing her best to maximize her own
payoff with the strategies she controls.

bii b2

|_f’331 b0

Ey(X.Y) = .‘{BTT' = (r. 1 — )
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Conditions for a Nash Equilibrium Point

* Proposition 3.2.1 A necessary and sufficient conditionfor X* = (z*.1—a2%). Y
(y*. 1 — y*) to be a Nash equilibrium point of the game with matrices (A, B) is

(1) E(1.Y") < E(X*.Y")
(2) Eil2,Y*) < E/(X*.Y*)
(3) Eu(X*.1) < Ep(X*.Y7)
3 Edxn) < Erxer)

— To find the Nash equilibria we need to find all solutions of the
inequalities (1)-(4).
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Conditions for a Nash Equilibrium Point (conta)

Proof. To see why this is true, we first note thatif (X =, Y™ ) is a Nash equilibrium,
then the inequalities must hold by definition (simply choose pure strategies for
comparison). So we need only show that the inequalities are sufficient.

Suppose that the inequalities hold for (X *,Y"). Let X = (2.1 — x)and }" =
(.1 —y) be any mixed strategies. Successively multiply (1)by » > Oand 1 —.0 > 0
to get

rE (1Y) =2(10)AY*" = 2(an1y" + ae(l — y*)) < 2B (X, Y")
and

(1 —2)E(2.Y*) = (1 —2)(0 1)AY*"
= (1 —2)(lany” +ax(l —y7)) < (1 —2)Ey(X".Y7).
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Conditions for a Nash Equilibrium Point (conta)

Add these up to get

rE(LY) (1 — ) EY2.YT) =uwlany” + app(l —y*))
{1 — r](nzl.u* +an(l —-y"))
<rE(X.YT )+ (1 —-x)Ey (XY
= (X7 Y7
But then, since
;I.'(fi.lly* -+ H.lg(l — y*)) T (1 - J?)(ﬂ-gly* -+ {122(1 - yt)] = z‘rAY*;.,
we see that

(z,(1 —2))AY*T = XAY*" = B/(X,Y*) < Ey(X*, Y.

Since X € S is any old mixed strategy for player I, this gives the first part of the

definition that (X", Y") is a Nash equilibrium. (]
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Rational Reaction Set

e Definition 3.2.2 Let X — (x.1—1x).,Y = (y. 1 —y) be strategies, and set f(x,y) =
Ef(X,Y),and g(x,y) = E;(X,Y). The rational reaction set for player I is the set
of points

Ri={(z,y) |0 < z,y <1, max flz,y) = f(x,y)},

0<z<

and the rational reaction set for plaver 11 is the set

Ry = {(x, 0<z,y<l1, m: r,w) = g(x,y)}.
n={(z,y) |[0<z,y < omex g(z,w) = g(z,y)}
— (2*,y") in both Ry and Ry saysthat X* = (2*,1 —2*)and Y* = (¢*.1 — y*)
is a Nash equilibrium.
— Following to simplify notation, we drop the star on X* and Y* so that
they will be simply (x,1—2), (y, 1 —y), and assumed to be a Nash equilibrium.
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Proposition 3.2.1 (1)-(2)

* For Fi(1.Y) < Ei(X.,Y)and Ey(2.Y) < Ei(X.Y)
— We have the inequalities

(@11 — a2 — a2 + az)y + (@12 — a2) + (@21 — az)y + an

< (ayj; — a2 — as; + ax)ry + (aj2 — az)r + (az; — a2y + aze
and

(@11 — ar2 — agy + ag)ry + (a12 — aze)r + (21 — 022)y + a2
> (@21 — a22)y + aza.

— Simplifying these two, we get
M(1l—-z)y—m(l—z)<0 and Mzxy—maz >0, (3.2.1)

Where _-'” — (111 — (192 (191 + (199 and m = do9 — a12.
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Propositio

N 321 (1)'(2) (cont’d)

e Consider the following cases:

I. M = m = 0. In this case M (1

r)y —m(l —x)=0,and Mry —mx = 0,

for any =,y € |0, 1]. This is the trivial case because if M/ = m = 0, then
a2 = ay2 and ay, = ag,. So it doesn’t matter what player I does.

2. M =0,m > 0. Then —m(1 -
and y is anything in |0, 1].

r) < 0and —mz > 0, implying that > = 0

3. M =0,m<0.Then (1 —x) <0, and = > 0. Solutionsarer = 1.0 <y <

1.

Chih-Wen Chang @ NCKU
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Proposition 3.2.1 (1)-(2) (conta)

4. M >0.Then M(1 —z)y —m(l —z) <0

, and Mzxy — max > 0, and there
are many solutions of these:

m
fr=0 = 0<y< —,
i1 .r _y_lf

m
if 0 < xr <1 = —
1 < T < >y N/
1f ]l =— 1>y > m
it r = —

=Y =7

Toseethis.ifx = 1, then M (1 —z)y—m(l—2) =0<0, and My—m > 0.
Soy > m/M.If x = 0. then M(1 —~x)y —m(l —x) = My —m <
0, and Mzxzy —mx = 0 > 0,sothat y < m/M.If 0 < x < 1, then
M(1l—-x)y—m(l—2)<0 = My-m<0Oand Mzy —mzr >0 —=
My —m > 0. Consequently y = m/M.
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Proposition 3.2.1 (1)-(2) (conta)

5. M < 0. Thenagain M (1 —x)y — m(l —x) <0, and Mxry —mx > 0, and
we have multiple solutions:

ifr — 0 1>y> 0
.1| — LY F o, .
: g Y < A
i) <ax <1 !
1 T < = Y= —,
J M

e

ifr=1—=— (< < —.
1T .r _I;‘Il!
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Proposition 3.2.1 (1)-(2) (conta)

* Figure 3.1 is a graph of the set of the possible solutions.

— The bold zigzag line is the rational reaction set for player | for a given Y.

— Expression of rational reaction set for player | in the case M > 0:
m Tt T
R:{ﬂ.- 0< c:—}u{(.-r.—) {']{;:.'{l}L_J{ Ly) | 2 < «:::1}.
1=14(0,9) Y r, o7 ) | 1' (Ly) [ 37 =v
Y

m/M

X
I

Looking for Nash: the case M>0

Figure 3.1 Rational reaction set for player 1.
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Proposition 3.2.1 (3)-(4)

e For Ey(X*.1) < Ey(X*.Y") and Ey(X*.2) < Ej(X*.Y7)
— Similarly, we let
R =101y —bio —boy + boo. 7 = by — boy.
Then the inequalities we have to solve become

Rx(l —y)—r(l —y) <0, Rxy—vry=>0.

e Consider the following cases:
1. R=0,r=0. Solutionsarcall 0 <2 < 1,0 <y < 1.

2. R=0,r > 0. Solutions are 0 < .r < 1.y = (.

3. R=0,r < 0. Solutionsare 0 < r < 1,y = 1.

Chih-Wen Chang @ NCKU Game Theory, Ch3.2
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Proposition 3.2.1 (3)-(4) (conta)

4. R > 0. Solutions are

ify=0 — 0< o< —,

R
.
f0<y< 1l = = —.
' J : R
r
ify=1=—= 1>zx> —.
ly _I_R

5. R < 0. In this final case the set of all possible solutions are
ify=0 =— 0< <

f0<y<l = xr=

=1~ =) s

fy=1=—= 1>2ux>

Chih-Wen Chang @ NCKU Game Theory, Ch3.2



Proposition 3.2.1 (3)-(4) (conta)

* Figure 3.2 is a graph of the set of the possible solutions.

— Bold zigzag line is the rational reaction set for player |l for a given X.

— Expression of rational reaction set for player Il in the case R < O:

IRy = {{.r.ll} 0<uax< .;f} {(éu) 0<y< I} ‘ {[_;-_ 1) | ?{? <r< l} _

Y

X
/R I
Looking for Nash: the case R<(
Figure 3.2 Rational reaction set for player I1.
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Rational Reaction Set (conta)

* Rational reaction set for both players

— If we lay the graph in Figure 3.2 of I}, on top of that in Figure 3. 1 of
the set Fi. the point of intersection in RN [y is the Nash equilibrium.

— The mixed Nash equilibrium is at the point which is in both rational
reaction sets for each player.

y

Nash point

Nash point

Nash point
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The Mixed Nash Equilibrium

* Inthecase M # 0.R # 0, we have a mixed Nash equilibrium
X* =(z,1-2),Y" = (y,1—y) at

r (199 — 12 m f)gg —_ bgl
= — = and y = — = .
R a1 — 112 (1921 + 929 M E}“ — {'Jlg — {IJ;M 1 hj?

— The pure Nash equilibria will be the intersection points of the rational
reaction sets at the corners.

— The expected payoffs to each player are calculated after determination
of the Nash equilibria by calculating X*AY*” and X*BY*'.
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Example 3.5

 The bimatrix game with the two matrices

2 -1 1 -1
4 [—1 1]‘ B:{—l 2}

— The pair (2,1) and (1,2),which the first number is the largest in the first
column and the second number is the largest in the first row in (A,B).

— X* = (1,0),Y* = (1.0) is a Nash point as is X" = (0,1),Y" = (0, 1),
— Apply the solution results obtained in the theorem, then

;"1.-’_‘2—(—1)—(—1)+1::3}(].1?'3:1—(—1)_—2.3:3
3 M 5

o

R=5r=3 == -,

D, T =3

i | o
| |
L

and we have three equilibria at points (z,y) = (0,0),(z,y) = (%,
and (z,y) = (1.1).
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Examp|e 35 (cont’d)

— In Figure 3.3, the three equilibria are where the two zigzag lines cross.
— Pure Nash equilibria: (z,y) = (0.0), and (1.1) (on the boundary).
— Mixed Nash equilibrium: (z,y) = (2. 2) (in the interior).

— The expected payoffs are g (x* v*) =

Chih-Wen Chang @ NCKU

[ W

and Ep(X*,Y") =

Q| =

y

Nash point

Nash point
m/M=2/5

Nash point rR=3/5 !

Nash Equilibria
Figure 3.3 Rational reaction sets for both players
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Rational Reaction Sets Calculation

 Remark: A direct way to calculate the rational reaction sets
for 2 x 2 games.

— Let X = (z,1 —2x), Y = (y,1 — y) be any strategies and define
flr.y) = E\(X,Y) and g(z,y) = Ey(X,Y).

— The idea is to find for a fixed 0 < y < 1, the best response to y. Accordingly,

max f(x,y)= max rFE(1.Y)+ (1 —2)E(2.Y)

D<x<] 0<r<l
— 2[E(1,Y) — Ei(2,Y)] + Ei(2.Y)
Fi(2,Y) atx=0if E4(1.Y) < E(2.Y);
= E(1.Y) atxz=1if E(1.Y) > Ey(2.Y):
Fi(2,Y) atany0 <x < 1if E4(1.Y) = Ey(2.Y).

Chih-Wen Chang @ NCKU Game Theory, Ch3.2 40



Rational Reaction Sets Calculation (conta)

— For example,
FY(1,Y) < Fi(2,Y) & My < m,

M = 11 — 12 — aA21 + d22, M = d22 — A12.

[f M > 0 this is equivalent to the condition 0 < y < m/M. Consequently,
in the case M > 0, the best response to any 0 < y < M/m is z = 0.
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Requirement of the Inequalities of a
Nash Equilibrium

o Proposition 3.2.3 (X . Y") is a Nash equilibrium if and only if

Fi(i,Y*) =, AY*" < X*AY*' = E(X*,Y")., i=1.....n.
En(X™,j) = X"B; < X*BY"' = Ey(X",Y"), j=1,

Proof. If F(i,Y™") = AY D < X*AY ! = vy, for all rows, then we take any
X =(r1.....x,) € 5,. By multiplying and adding, we obtain
T Ti
Z.’IHEI(I'-,Y*) < Z T;U4 = VA.
i=1 i=1
But the left side of this inequality is Ey(X,Y*) = XAY* and so Ej(X.Y™) <

Ey(X*,Y*), forany X € 5,,. The remaining parts of this claim follow in the same
way.

[]

Chih-Wen Chang @ NCKU Game Theory, Ch3.2

42



Example 3.6

 Someone says that the bimatrix game

(2,1) (—=1,-1)
(—1,-1) (1.2)

has a Nash equilibrium at X+ = (2.
— To check that, first compute

FEr(X*.Y") = Ey(X"Y") = l}
— Next check that this number is at least as good as what could be

gained if the other player plays a pure strategy.

— Infact, Ey(1.Y*) = & = Ey(2.Y*) and also Ey(X™, 1) = En(X™,2) =

so we do indeed have a Nash point.

-\...-ln..-'\-
el
S
~
*
|
—
'\-.-“'\.-'
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Equality of Payoffs Theorem

e Theorem 3.2.4 (Equality of Payoffs Theorem) Suppose that

X" = (ry.19...... rn). Y = (y1.y2..... YU )

is a Nash equilibrium for the bimatrix game (A, I3).

For any row k that has a positive probability of being used, x; > 0. we have
Efk.Y*) = (X" Y") = .

For any column j that has a positive probability of being used, y; > 0, we have
FEy(X*.j) = Ep(X*,Y") = vy That is,

re > 0= E/(k.Y") =1
Y = () — f‘,",r;{:};‘.j) = .
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Equality of Payoffs Theorem (conra)

Proof. We know that since we have a Nash point, E/( X", Y") = > Ej(i.Y7)
for any row i. Now, suppose that row £ has positive probability of being played against
Y™ and that it gives player I a strictly smaller expected payoff vy > Ej(k.Y ™). Then
vp > Fi(i,Y ") forall therows 7 = 1.2, .. .. n,i # k,and vy > Ey(k,Y") together
imply that

wivp 2wy E(e, Y ) i # ke and xpey > wpEy(kBJYT).

Adding up all these inequalities, we get

L

S wwi=u> Y wE(iY) = B(XT.Y) =,

t=1 1=1

This contradiction says it must be true that vy = FEj(Ak, Y ™). The only thing that could
have gone wrong with this argument is ;= 0.

Chih-Wen Chang @ NCKU Game Theory, Ch3.2 45



Equality of Payoffs Theorem (contq)

We can find the (completely) mixed Nash equilibria by solving
a system of equations rather than inequalities for player Il:

DAY = Bk Y™) = E (s.Y") = JAY" . assuming that x;, > 0, > (0,
and

X'B; = Ey(X".j)=FEy(X".r) = X"B,, assuming that y; > 0.y, > 0.

Also with the additional condition

Ty +To+ -+ Iy = l'r Y1 —I_yil T T Y = 1.
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Example 3.7

* Consider the matrices with 0<x,<1,

4 2 1 0
N
— By the equality of payoffs Theorem 3.2.4, v; = Ei(1.Y) = E(2,Y),
we have 201 +y2 = —4y1 +2y2, and y1 +y2 =1
and get y1 = 0.143, yo = 0.857,and v; = 1.143.

- Slmllarly, E”[Xj 1) — EII(X: 2) giVCS
1 +2r9 =310 and 1+ 19 =1 — 11 =29 = 0.5, v = 1.5,
— Notice that we can find the Nash point without actually knowing v1 or vy.
* The Nash point for Il is found from the payoff function for player | and vice versa.
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Interior Mixed Nash Points by Calculus



1o

Calculus Method for Interior Nash (3.3.1)

. The payoff matrices are A, .,, for player I and B, .,, for player Il. The

expected payoff to Tis E;(X.Y) = XAY" . and the expected payoff to I is
En(X.Y) = XBYT.

" ~11 — |
Let Lp — I — (rl T Ty |) = Iy — Z,—| iy Ym = o LI;P:] Yy S0
each expected payoff is a functiononly of xy,.... 20 1. y1... .. U —1- We
can write
Er(T1, oy e 13U s Y1) = By(X,Y),
Eo(xy,...,: T s Yloeens Ym—1) = Ey(X,Y).

. Take the partial derivatives and solve the system of equations 0F,/dxr; =

0, OEy/dy; =0,i=1,....n—1, j=1,..., m—1.

If there 1s a solution of this system of equatinn% which satisfies the constraints
~n—1 _. o .

v > 0,y; = 0and ) "oy < 1 Z”' y; < 1, then this is the mixed

strategy Nash equilibrium.
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Calculus Method for Interior Nash (3.3.1) (conta)

e Remark

— We do not maximize E'y(xy..... 201, Y1,-.-.m—1) overall variables
x and y, but only over the x variables. Similarly, we do not maximize

Folry,..... 1 Ylse - s Ym—1) over all variables x and y, but only over
the y variables.

— Apply calculus will give us all the interior, that is, completely mixed
Nash points.

— Calculus cannot give us the pure Nash equilibria because those are
achieved on the boundary of the strategy region.



Example 3.8

e Use the calculus method to solve the game in the preceding
section with matrices

(2] s[4 ]

— First, set up the functions (using X = (2.1 — ), Y = (y.1 — y))

Ei(r,y)=2r - (1 —2)ly+[—o+ (1 —2)(1 —y),

Eolr,y) =[x (1 —x)ly+[—x+2(1 —2)(1 —y).
— Player | wants to maximize E; for each fixed y. so we take

OFE (x,y)

: =3y+2y—-2=>0y—2=0 =— y=
o : .

cl NS
-
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Examp|e 38 (cont’d)

— Similarly, player Il wants to maximize Fs(x.y) for each fixed .r. so

OFs(x,y)

‘ =br—3=0 — r=
Ay

— Everything works to giveus X = (2. %) and Y* = (£,2) isa Nash
equilibrium for the game, just as we had before.
— Notice that we do not get the pure Nash points for this problem.
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Example 3.9

 Two partners have two choices for where to invest their
money, say, O,.0, where the letter O stands for opportunity,

but they have to come to an agreement. We model this using
the bimatrix

el 0.
O, ‘ (1.2)  (0.0)
O, | (0,0)  (2,1)

— There are two pure Nash points at (O1.01) and (O2. O2),

— We will start the analysis from the beginning rather than using the
formulas from section 3.2.

— We will derive the rational reaction sets for each player directly. Set

1 0 2 0
A_[n 2]“8: [n I]‘



Examp|e 39 (cont’d)

— For player |
Fi(z.y) = (x2(l —z)- (y.1—y)"
=ry+2(1-x)(1 —y) =3y — 20 — 2y + 2
=x(3y — 2) — 2y + 2.

f3y —2>0 — y > % achieved at r = 1;

if y = %, achieved at any € [0, 1];
2042 i3y —2<0 = y< éjachievedatm:[}.

ses 2

e

max F(x, — ¢
0<x<1 1( yJ

a

\

So the rational reaction set for player I:

Ry =1(2",y) € [0,1] x [0, 1] | max Ei(z,y) = E1(a”,y)}

2 2 2
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Examp|e 39 (cont’d)

— For player Il

FEylz,y) =2zy+(1—2)1—y)=3zy—z—y+1=yBx—-1)—x+ 1.

f

—x+1 if{?lg;t:«::—{,}achievedaty:[];
m[ax Eo(z,y) =< 2 if z = 1 achieved at any y € [0, 1]
ye[0,1] - . ‘ _ ‘
| 2z 1f% < x < 1 achieved aty = 1.

The rational reaction set for player Il:

Ry = {(z,y") € [0,1] x [0,1] | max FEa(z,y) = Eax(x,y")}

0<y<1
1 1 1
:{(I‘D)*OEI{E}U{(Ey)?oiygl}u{(rﬂ1)5{:5{_:1}
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Examp|e 39 (cont’d)

e Rational reaction sets for both players (figure below)

— Notice that the rational reaction sets and graphs do not indicate what
the payoffs are to the individual players, but only their strategies.

— The zigzag lines cross (which is the set of points K11 Ry ) are all the
Nash points: (z,y) = (0,0),(1,1) and (3,%).

}' Pure MNash
I R
Rational Set for [
2/3 @ \
Mixed Nash

Pure Mash

|

I

I

. o

—=— Rational Set for I]l
I

|

|




Examp|e 39 (cont’d)

— The associated expected payoffs are
F1(0,0) =2, FE»(0,0) =1,
Ei(1.1) = 1, Ey(1,1) =2,

1 2 2 1 2
and Fil=-,-1===FE5-=-.—-].
3 3 3 3 3
12

—| Only the mixed strategy Nash point (X*,Y*) = ((3,3).(3.
the same expected payoffs to the two players—fair but less.

3))

— Calculus will give us the interior mixed Nash very easily:

dx S
aEE(‘:}:’ ',f')’) —3r—1=0 — 1 = 1
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Definition of Rational Reaction Sets

o Definition 3.3.1 The rational reaction sets for each playver are defined as follows:

R ={(X.Y) €S, xS, |E(X,Y)=max Ep,Y)}.

pedS,

Ry={(X.Y)e S, xS, | Ef(X.Y)=max Ey(X,t)}.

f :': l‘:;lrr

The set of all Nash equilibria is then the set of all common points R; (1 Ry;.

— The definition above is the rational reaction sets in the general case
with arbitrary size matrices.
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Equations for an Interior Nash Equilibrium

* We can write down the system of equations that we get using
calculus in the general case. The process is as follows:

— Start with o
E(X,Y) = XAY" =) "wiaiy;.
J=11=1
— Following the calculus method (3.3.1) with T, = 1=~ ) :

1 I
XAYT i L Tria;jy; = i (”Z: ria;Y; + (1 ”Z .1';) rr,,,y,)

g=1 1=1 g=1 1=1 k=1
n—1 n—1
= E Apjlj + E LilijlY; — E Iﬂ‘(”r{j”j)
J=1 =1
m n— l
— 2 (”.HJHJ L E Ly iaf..f' B ””,F]HJ) - !-"] 2 IPT Cp—1:-Y1s-+-sUm }
j=1 1i=1
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Equations for an Interior Nash Equilibrium (conta)

— But then, foreach &k = 1.2, ..., n — 1. we obtain
e ;;;;.![;ﬁ_ljyl? -+ Ym) - g Y; '..”i-..' - ”HJ?'
— Similarly, foreach s = 1.2..... m — 1. we get the partials
DES (... ... I'I‘,,._E“ ..... Um—1) N i: 2ilbre — bina].
Jy —
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Equations for an Interior Nash Equilibrium (conta)

— So, the system of equations we need to solve to get an interior Nash
equilibrium is

Iri b
ZU.J!”‘-'.E — apj| = 0. k=1.2...., n—1.
J=1
r
Z.r[h,_h bim| = 0. s =1.2,..., m—1, % (3.3.2)
1=1
rn—1 rm—1
Iy, =1 — Z Tio Y =1~ Z -
1 =1 =1 y

— Once these are solved, we check that =; > 0.y; > 0 andif so we get
the Nash equilibrium X* = (zy.....x,) and Y* = (y;..... Urn )-
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Equations for an Interior Nash Equilibrium (conta)

— Notice that the equations are really two separate systems of linear
equations and can be solved separately.
* Thevariables «; and y; appear only in their own system.

— Also notice that these equations are really nothing more than the
equality of payoffs Theorem 3.2.4. For example,

Irl rr rri
E T - | = \ }"‘ _
yilak; — a,;] =0 g Yjak; = E YjQnj
J=1 1= 3=
which is the same as saying that for & — 1.2... .. n — 1. we have

i M

Ei(k.Y") = Z YAk Z.u;”u_; = Ei(n,Y).

1=1 .-'—l

— These equations won't necessarily work for the pure Nash or the ones
with zero components.
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Example 3.10

e Use the equations (3.3.2) to find interior Nash points for the
following bimatrix game:

-2 o5 1 2 |
A=1 -3 2 3 B=1| -3 I l
2 1 3 3 | -1

— By the system of equations (3.3.2), we have

2y +6ys —2 =0, —5y; +yo =0 = Y1 = i = O
. L A
122, — 11lao +4 =0, —8xy —dry+2=0 = 11:72 = 13
Besides, >y, =1 and Y x =1 = Y3= 13003 = 1
J i
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Exa m p | e 3 . 10 (cont’d)

— So the interior Nash point is

1 4 9 1 5 8
X*=(= = 2) ad vy =(—, 2 )
(14 14 14) 4 (14 14 14)

The expected payoffs to each player are

E(X*.Y*) = X*AYy*T = 31

14
Ey(X*.Y*) = X*BY*! = H
— There are also two pure Nash points:

X*=(0,0,1),Y" = (1,0,0) with payoffs (2, 3)

X* =(0,1,0),Y* = (0,0, 1) with payoffs (3.4).
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Exa m p | e 3 . 10 (cont’d)

 Maple can be used to solve the system of equations giving an
interior Nash point.

restart:with(LinearAlgebra):
A:=Matrix([[-2,5,1],(-3,2,3],[2,1,3]]);
B:=Matrix([[-4,-2,4],([-3,1,4],[3,1,-1]1]);
Y:=Vector(3,symbol=y):
X:=Vector(3,symbol=x):
yeq:=seq(add(y[jI*(A[1i,3]1-A[3,i]1),§=1..3),i=1..2);
xeq:=seq(add(x[1]*(B[i,s]-B[1,3]),i=1..3),8=1..2);
xsols:=solve({xeq[1]=0,xeq[2]=0,add (x[i],i=1..3)=1},
[x[1],x[2],x[3]11);

VoW W OV W OV VY

> assign(xsols);

> ysols:=solve({yeq[1]=0,yeq[2]=0,add(y[j],j=1..3)=1},
[y[1],y[2],y([3]]1);

> assign(ysols);

> Transpose(X) .A.Y; Transpose(X).B.Y;
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Exa m p | e 3 . 10 (cont’d)

 Remark of the Maple command

— In Maple, vectors are defined as column matrices, so a correct
multiplication is as shown in the Maple commands in the last line,
even though in the book we use X AY 7.

— If you change some of the numbers in the matrices A, B and rerun the
Maple code, you will see that frequently the solutions will have
negative components or the components will be greater than one.

* Especially if there is more than one interior Nash equilibrium (which could occur for
matrices that have more than two pure strategies).



Example 3.11

 Consider a example in which the equations do not work (see
problem 3.11)[because it turns out that one of the columns
should never be played by player Il.

— The mixed Nash is not in the interior, but on the boundary of S,, x S,,..

— Let's consider the game with payoff matrices

2 3 4 0 2 1
‘4_[0 4 :_:‘.]‘ le__}“ ]J'

— After calculus, we have
value(A) = 2, with puresaddle X4 = (1.0), Y4 = (1.0.0),
valie (_HT} = 1, withsaddle X = (0,0.1),Yg = (g %)

Now,let X = (.1 —x).Y = (y1.y2.1 —y; — y2) be a Nash point ,
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Example 3.11 (conta)

— For player |

Ei(r,y1,y2) = XAYT = rlyr — 2yo + 1] + yo — 3y1 + 3.

max r(y; —2y2 + 1] +y2 — 3y1 + 3

0<zx<l
([ 2y —ya+4 ifyr >200-1 ( Ei(lyi,y2) ifyy > 2y — 1;
=< yo—3y+3  ifyr=2y—1; =< Ej(x.2y2 — 1y2) ify; =2y —1;
| 23y +3 ify <2y — 1. [ E1(0,y1,92) ify; <2yz — 1.

Along any point of the straight line i, = 2y — 1 the maximum of
E1(x.y1.y2) is achieved at any point 0 < x < 1.

Finally, the rational reaction set for player | is
Ry = {(x.y1.y2) | [(1.y1.92). 50 > 2y2 — 1], 0r

(x.2y2 = 1oy2). 0 < e < 1] or [(0.y1,92). 01 < 2y2 — 1]}
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Example 3.11 (conta)

— For player Il

Fo(x. yi,y2)

max Yy +y(3e — 1)+ (-2 +1)

y1+y2<1.

yi1.y220
([ 2r+2 if3r— |
= { =; if 30 — 1
|z if 3 — 1

<

>

l;
|
l.

\

¢

£
£
E

so(a, 1.0)

2 (5.y1.92)
2 [:I 0. 1)

The rational reaction set for player Il is

Ry = {(.‘I'.jj]._:'jg) | [(f 1.0).0 < x <

2
—=. Y1,
3 Y, Y2

Chih-Wen Chang @ NCKU
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XBYT =y, + 1230 — 1)+ (—2x + 1).

2
) Yy Yy = l] , or [(.1*,[']. 1), 3 <r < 1]}
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Example 3.11 (conta)

— The graph of [y and ) on the same graph (in three dimensions) will
intersect at the mixed Nash equilibrium points.

2
=, 0.

1 2 s, o (2
,3.5) = zand Ex(3, 3,

— Nash equilibrium

— Expected payoff
E (

oo | b
Gl |
e
[l
I
A
e e

o | g
It.r'\-l'—'
L] [
i

— We could have simplified the calculations by the fact that column 3 for
player Il is dominated by column 1.
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Nash’s Theorem

 We will show that the set of all Nash equilibria is then the set
of all common points R, N Ry.

— Theorem 3.3.2 There exists X* & S, and Y " € S,,, so that
Ef(X*Y") = X"AY*! > E/(X.Y"),
En(X*.Y*) = X*BY*' > E (X*.Y).

for any other mixed strategies X € S,,.Y € 5,,.

— The theorem guarantees at least one Nash equilibrium if we are willing
to use mixed strategies.

— We will give a proof that is very similar to that of von Neumann's
theorem using the Kakutani fixed-point theorem for point to set maps.
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Proof that There Is a Nash Equilibrium for
Bimatrix Games

* Proof.

First S, x S,, is a closed, bounded and convex set. Now for each given

pair of strategies (X.Y ). we could consider the best response of player Il
to X and the best response of player | to Y.

— Definition 3.3.3 The best response sets for each plaver are defined as

BR(Y)=1{X €5, | E(X,Y) =max Fi(p,Y)}.

PE S,

BR”(J{} = {‘! e S,, | EH(_Y. ,}') = max !'.r['\ f}}

teS,,
— The difference between the best response set and the rational
reaction set is that the rational reaction set Ry consists of the pairs of
strategies (X.Y) for which Ei(X.Y) = max, Ej(p.Y). whereas BR|(Y")

consists of the strategy X for player I that is the best response to a fixed "
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Proof that There Is a Nash Equilibrium for
Bimatrix Games (contu)

— Whenever you are maximizing a continuous function, which is true of

E1(X.Y), over a closed and bounded set (which is true of S,), you
always have a point at which the maximum is achieved. So we know
that BR|(Y') # (. Similarly, the same is true of BR;(X) # V.

We define the point to set mapping

Ve [.X}) = 5” X Hm ~ .HRI{}} X Ifh’ll[-‘ir) C Sn X -5‘;”.

which gives, for each pair (X, Y )of mixed strategies, the best response
strategies (XY € o(X,Y) with X' € BR(Y)and Y' € BR;(X).
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Proof that There Is a Nash Equilibrium for
Bimatrix Games (contd)

It seems natural that our Nash equilibrium should be among the best response
strategies to the opponent. Translated, this means that a Nash equilibrium (X *, V™)
should satisfy (X*,Y™") € o(X*,Y ™). But that is exactly what it means (o be a
fixed point of . If  satisfies the required properties to apply Kakutani’s fixed-point
theorem, we have the existence of a Nash equilibrium. This is relatively easy to check
because X +— Ej(X,Y)and X — Ey(X.Y) are linear maps, asare Y — E}(X.Y)
and Y — Ey(X,Y ). Hence it is easy to show that (X, Y') is a convex, closed, and
bounded subset of S,, x S,,. It is also not hard to show that ¢ will be an (upper)
semicontinuous map, and so Kakutani’s theorem applies.

This gives us a pair (X", Y") € (X", Y"). Written out, this means X* €
BR{(Y"™) so that

Ef( X", Y")=max Ei(p,Y") > E(X.,Y") forall X € S,

}”: r"-':'-.u

and Y* € BRy;(X") so that
Ey(X™.Y") = max Ey(X™.t) > Ey(X".Y)forallY € 5,,.

That's it. (X ™, Y ™) is a Nash equilibrium. [
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Remark

e |tisimportant to understand the difficulty in obtaining the
existence of a Nash equilibrium.

— |If our problem was

max Fi(X,Y) and max

| Eu(X.Y).
X€S,.YES, XESn.YESm

then the existence of an (Xi.Y]) providing the maximum of E} is
immediate from the fact that Ej(X.Y') is a continuous function over a
closed and bounded set. The same is true for the existence of an (X, Yu)
providing the maximum of F;(X.Y).



Nonlinear Programming Method for
Nonzero Sum Two-Person Games



Nonlinear Program

* A nonlinear program is a method of finding all Nash equilibria
for arbitrary two-person nonzero sum games with any number
of strategies.

— For example, if we have an objective function f and constraint
functions /1. .. .. hi. the problem

Minimize f(arqy...... r,) subjecttoh;(ry.....: rn) < 0.7 =1,..., k.

is the general formulation of a nonlinear programming problem.

— If the function f is quadratic and the constraint functions are linear,
then this is called a quadratic programming problem.

— Once we formulate the game as a nonlinear program, we will use the
packages developed in Maple to solve them numerically.




Nonlinear Program (contq)

e Theorem 3.4.1 Consider the two-person game with matrices (A, B) for players I
and Il. Then, (X* € S,,.Y ™ € 5,,,) is a Nash equilibrium if and only if they satisfy,
along with scalars p™,q" the nonlinear program

max XAY!T + XBY! —p -y
X.Y.p.q
subject to
AYT < pJ!
B' X" < qJ} ( equivalently X B < q.J,,,)

r, 20y, 20, XJ,=1= Yy

T

where J), = (1 1 1 -+ 1) is the 1 x k row vector consisting of all 1s. In addition,

p* = E(X*.Y"). and ¢* = Ey(X*.Y").
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Nonlinear Program (contq)

 Remark. Expanded, this program reads as

e Tt

It Tri
max E E ria;iy; + E E J'ébéj:‘-’;’j" P—4q
X.Y.p.gq C

=1 1=1 =1 1=1

subject to

Trt

Z ai;y; <p,v=1,2,...,n,
j=1

]

1=

Iri

i
r; 2 0,y =2 0, Z.‘I-‘! = ZH-J = 1.
J'__..|_

1=1

— This is a nonlinear program because of the presence of the terms z,y;.
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Proof of Theorem 3.4.1

* Partl: If we have a Nash point, it must solve the nonlinear

programming problem.

Proof. Here is how the proof of this useful result goes. Recall that a strategy pair
(X*.Y")is a Nash equilibrium if and only if

E(X*.Y*) = X"AY*" > XAY*", forevery X € S,,, (3.4.1)
En(X*Y") = Xy’ > X*BYT, for every Y € S,,.

Keep in mind that the quantities £ (X ™, V™) and Ep(X ™, Y ™) are scalars. In the
first inequality of (3.4.1), successively choose X = (0,..., [,...,0) with 1 in each
of the n spots, and in the second inequality of (3.4.1) choose Y = (0,...,1,...,0)
with 1 in each of the m spots, and we see that E{(X*.Y*) > E|(i,Y*) = ;AY*T
foreach i, and Ey(X*.Y") > Ey(X*,j) = X" B;, for each j.
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Proof of Theorem 3.4.1 (contq)

In matrix form, this is
Ef(X*. Y9Il = X AY*TJT > Ay+T, (3.4.2)

Ex(X*.Y*)J, = (X*BY*")J, > X"B.
However, it is also true that if (3.4.2) holds for a pair (X *,Y ") of strategies, then
these strategies must be a Nash point, that is, (3.4.1) must be true. Why? Well, if
(3.4.2) is true, we choose any X € S, and Y € 5,,, and multiply

E(X*YIOXJ' = B(X*. V") =X Ay T xJT > xay*"
En(X*.Y*) ) YT = Ey(X*.Y*) = (X*BY*")J,YT > X*BYT,
because X.J = .J,, YT = 1. But this is exactly what it means to be a Nash point.

This means that (X ™, Y™) is a Nash point if and only if

XAVt > Ayt (x*BY*")J, > X*B.

Tt

We have already seen this in Proposition 3.2.3.
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Proof of Theorem 3.4.1 (contq)

Now suppose that (X7, Y ") is a Nash point. We will see that if we choose the
scalars

Pt = E(X*.Y*) = X*AY"T and ¢* = Ey(X*.Y*) = X*BY"*T,

then (X ™. Y", p*, ¢") is a solution of the nonlinear program. To see this, we first
show that all the constraints are satisfied. In fact, by the equivalent characterization
of a Nash point we just derived, we get

X AY*TJT = p*JT > Ay*"T and (X*BY*")J,, =q¢"J,. > X*B.

The rest of the constraints are satisfied because X* € S,, and Y* € S,,,. In the
language of nonlinear programming, we have shown that (X ™, Y™, p*.¢") is a fea-
sible point. The feasible set is the set of all points that satisfy the constraints in the
nonlinear programming problem.
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Proof of Theorem 3.4.1 (contq)

We have left to show that (X ™, Y™, p*. ¢") maximizes the objective function
f(X.Y.p.q) = XAY" + XBY" —p—¢q

over the set of the possible feasible points.

Since every feasible solution (meaning it maximizes the objective over the feasible
set) to the nonlinear programming problem must satisfy the constraints AY T < pJT
and X B < q.J,,,, multiply the first on the left by X' and the second on the right by
YT to get

XAYT < pXJ;{ = p, xXBy! < r;,f”,_YT = q.

Hence, any possible solution gives the objective

(X, Y.p.q) XAYT 4+ XBYT —p— q < 0.
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Proof of Theorem 3.4.1 (contq)

So f(X Y.p,q) < 0 for any feasible pmnl But with p* = X*AY*' ¢* =
X*BY*", we have seen that (X*.Y".p".q")1s afeasible solution of the nnnlmear
programming problem and

FIX*"Y*.p'q")= X*AY'T + X*BY'T —p* —¢* =0

by definition of p* and ¢*. Hence this point (X*,Y".p",¢") both is feasible and
gives the maximum objective (which we know is zero) over any possible feasible
solution and so is a solution of the nonlinear programming problem. | This shows that

if we have a Nash point, it must solve the nonlinear programming problem.

Chih-Wen Chang @ NCKU Game Theory, Ch3.4 84



Proof of Theorem 3.4.1 (cont)

e Part Il: Any solution of the nonlinear programming problem

must be a Nash point.
Proof.

For the opposite direction, let X.Y,.p;.q, be any solution of the nonlinear
pmﬂtdmmmﬁf problem. let (X *.Y ") be a Nash point for the game, and set p* =
XAY*" ¢ = X*BY*". We will show that (X,.Y7) must be a Nash equilibrium
of the game.

Since X .Y satisty the constraints of the nonlinear program ;H'l' < P I! and
X1B < q1.J,,. we get, by multiplying the constraints appropriately

XAy <pXyJ =pr and X BY! <Y/, =q.

Now. we know that if we use the Nash point (X*,Y*) and p* = X*AY* ¢* =
X*BY ™' then f(X*.Y".p*.q") = 0. so zero is the maximum objective. But
we have just shown that our solution to the program (X ,.Y.p,.q;) satisfies
f[}(] .Y < P1-q1 ) < 0.
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Proof of Theorem 3.4.1 (contq)

Consequently, it must in fact be equal to zero:
f(X1.Yi.pr.q1) = (X, AY)" —p)) + (X, BY," —q1) =0.

The terms in parentheses are nonpositive, and the two terms add up to zero. That can
happen only if they are each zero. Hence

X, AY," =p, and X, BY! = q.
Then we write the constraints as
Ay < (x,AYhHJt. xXyB < (X\BY,")J,.

However, we have shown at the beginning of this proof that this condition is exactly
the same as the condition that (X,. Y] ) is a Nash point. So that’s it: we have shown
that any solution of the nonlinear program must give a Nash point, and the scalars
must be the expected payoffs using that Nash point. L
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Proof of Theorem 3.4.1 (cont)

Remark. It is not necessarily true that £/(X,.Y,) = p, = p" = Ey(X".Y7)
and £y (X1. Y1) = q1 = ¢" = En(X*.Y™). Different Nash points can, and usually
do, give different expected payoffs, as we have seen many times.

* We restate the Theorem 3.4.1:
(X" € S5,.Y" € 5,,) isaNash equilibrium if and only if they satisfy the
nonlinear program s XAV £ XBYT — p g
subject to
AYT < pJ!
B'XT < qJ! ( equivalently X B < q.J,,)

ri 20y, 20, XJ,=1 y gl

T

where J) = (1 11 ---1), p"=E/(X*.Y")., and ¢* = Ey(X*.Y").
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Simple Example

e Consider the matrices

-1 0 0 I 2 2
{ 2 1 0. B I Ll 0
0 1 1 0 | 2

— Before you get started looking for mixed Nash points, you should first
find the pure Nash points:
(X1 =1(0,1.0).Y) =(1,0,0)) with expected payoff £ = 2. £}, = 1
(X2 = (0.0.1) = Y3) with expected payoffs Ef = 1. Ejf = 2.

— Solve the nonlinear programming and obtain a mixed Nash point:

X 02] Y. l[l:3 Fi(X3.Ys 2 En( X3, Y 2
Ag = ( 35) 3 — (E «i)-,” (X3, :i)—g« q = Il(x 3 :i) “E
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Simple Example (conta)

— Maple commands to get the solutions:

Quadratic
programming

VoW W W WY

with(LinearAlgebra):
A:=Matrix([[-1,0,0],[2,1,0],[0,1,1]]);
B:=Matrix([[1,2,2],[1,-1,0],[0,1,2]]);
X:=<x[1],x[2] ,x[3]>; #0r X:=Vector(3,symbol=x):
Y:=<y[1],y[2],y[3]>; #0r Y:=Vector(3,symbol=y):
Cnst:={seq((A.Y) [i]<=p,i=1..3),

seq((Transpose(X) .B) [i]<=q,i=1..3),

add(x[i],i=1..3)=1,add(y[i],i=1..3)=1};
with(Optimization);

objective:=expand(Transpose(X).A.Y+Transpose(X).B.Y-p-q);

QPSolve(objective,Cnst,assume=nonnegative,maximize);

General nonlinear
programming

WVOIWOW W

>

QPSolve(objective,Cnst,assume=nonnegative,maximize,
initialpoint=({g=1,p=2}));
NLPSolve(objective,Cnst,assume=nonnegative,maximize) ;

* There’s no need to use a computer to find the pure Nash unless it’s a very large game.
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Simple Example (contq)

— Modify the assume=nonnegative commands in case of Nash
equilibria associated with negative payoffs.

with(LinearAlgebra):
A:=Matrix([[-1,0,0],[2,1,0],[0,1,111);
B:=Matrix([[1,2,2],[1,-1,0],[0,1,2]11);
X:=<x[1],x[2],x[3]>;
Y:=<y[1],y[2],y[3]>;
Cnst:={seq((A.Transpose(Y))[i]l<=p,i=1..3),seq((X.B) [i]l<=q,i=1..3),
add(x[i],i=1..3)=1,add(y[i],i=1..3)=1,
seq(y[1]>=0,1i=1..3),seq(x[i]>=0,i=1..3)};
with(Optimization);
objective:=expand(Transpose(X).A.Y+Transpose(X).B.Y-p-q);
QPSolve(objective,Cnst,maximize) ;
QPSolve(objective,Cnst,maximize,initialpoint=({q=1,p=2}));

VoWV WV VWY

VWO WY

> NLPSolve(objective,Cnst,maximize) ;
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Example 3.12

e Suppose that two countries are involved in an arms control
negotiation. Each country can decide to either cooperate or

not cooperate (don't). For this game, one possible bimatrix
payoff situation may be

‘ Cooperate  Don't
Cooperate (L.L1)  (0.3)
Don’t (3,0) (2,2)

— This game has a pure Nash equilibrium at (2, 2), so these countries will
not actually negotiate in good faith. This would lead to what we might
call deadlock because the two players will decide not to cooperate.



Example 3.12 (conta)

* If athird party managed to intervene to change the payoffs,
you might get the following payoff matrix:

| Cooperate Don’t
Cooperate (3,3) (—-1,-3) .
Don’t (3,—1) (1,1)

— We now have pure Nash equilibria at both (3,3) and (1,1).
— Apply the Maple commands, calculus method or formulas, we obtain

_. 1 3\ |
,Xl — (—11)‘;‘] = (I{ijl _—-;.fj] :U
Xo = (0,1),Ya = (0,1),pa = q2 = 1,

\
X;g (IU) = Y;;.]H';; = (3 = 3.
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Example 3.12 (conta)

— By graphing the rational reaction sets we see that any mixed strategy
X =(z.,1—2).Y =(1.0). 7 <z < 1. isa Nash point.
— Now each player receives the most if both cooperate.

Nash points

Rational set for [

Rational set for 11

Nash point /4
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Example 3.13

* A Discrete Silent Duel. Consider a gun duel between two
persons, Pierre (player 1) and Bill (player Il). They each have a
gun with exactly one bullet. They face each other initially 10
paces apart. They will walk toward each other. At each step,
they each may choose to either fire or hold. If they fire, the
probability of a hit depends on how far apart they are
according to the following distribution:

(0.2 ifk = 10;

0.6 ifk=6;

0.8 ifk = 4;

1 ifk=2.

Prob(Hit|Paces apart = k) — ¢

\,



Exa m p|e 3 . 13 (cont’d)

— First we define the accuracy functions

0.2 ifa=0;

o 0.6 if x = 0.4;
prla) =p20T) =9 08 ifr =06
1 if r = 0.8.

Think of 0 < x < 1 as the time to shoot, r = 1 — k/10.
— Define the payoff to player I, Pierre, as

r

wy(x,y) {

.

Chih-Wen Chang @ NCKU

arpr(x) + b1 (1 — pi(x))p2(y)
+ci1(1 —pi(x)(1 — pa(y))
r)

dipa(y) +e1(1 — pa(y))p1l:
+fi(1 = p2(y))(1 — p1(x))

gip1(x)pa(x) + hypi(x)(1 — pa(x))
+ki(1 = pi(x))p2(x) + €,(1 — pr(x))(1 — pa(2))

Game Theory, Ch3.4

if r < y;

if v >y

if r = .
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Exa m p|e 3 . 13 (cont’d)

— Forexample, if 0 < » < 1 then Pierre is choosing to fire before Bill
and the expected payoff is calculated as

wy (i, y) = a; Prob(1l killed at ) + b; Prob(1 misses at &) Prob(1 killed at y)
+ 1 Prob(I misses at x) Prob(Il misses at y)
carpr(x) + by (1= pr(x))(1) + (1 = pi(z))(1 = pa(y)).

— The silent part appears in the case that | misses at x and | is killed at y
because the probability | is killed by Il is not necessarily 1 if | misses.
— The constants multiplying the accuracy functions are the payoffs. For
Pierre we will use the payoff values
a = —2.bp = —-1,¢1 =2,d; = —1,
ec1=1,fi=2.g0=-2hy =1k =—1.{, =2

—
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Exa m p|e 3 . 13 (cont’d)

— The expected payoff to Bill is similarly

( a»py(r) + bo(1 I»’I(-"'”ﬂj(:’f}

Feo(1 — pr(e)) (1 — pa(y)) if & < y:
) dapa(y) + ea(1 = pa(y))pr(2)
2(1.) = Ffo(1 = paly)) (1 = pr(x)) it >y

gop1(x)pa(x) + hopy () (1 — pa(x))
Fho(l — py(x))pal(x) + €2(1 — py(x)) (1 — po(x)) ifx =y.

— For Bill we will take the payoff values

(o — —l._b;g — ].f'g = _I_.EIQ — I
eo = —1.fo=1.g0 =0 ho = 1. ko = 1,0y = 1.
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Example 3.13 (conta)

— The payoff matrix then for player | is

A= (uy(r.y):x=0.04,0.6.08.y = 0,0.4,0.6,0.8).

or )
1.20 —-0.24 0.72 —=1.2
092 —-040 -—-1.36 —1.6
0.76 —-0.12 —-1.20 -1.8
0.6 0.2 —0.6 -2

Similarly, player II's matrix 1s

0.64 0.60 0.60 0.6
0.04 0.16 —-0.20 —-0.2
—0.28 0.36 0.04 —0.6
—0.6 0.2 0.6 0

B =
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Exa m p|e 3 . 13 (cont’d)

— To solve this game, you may use Maple and adjust the initial point to
obtain multiple equilibria. Here is the result:

X Y Ey  Eyp
(097, n 0.003)  (0.17.0.0.83.0) —04 06
(0.95.0.0.03,0.02) (0.08. ng 0.12) —0.19 0.58
(0.94. U 0.06.0) (0.21.0.79.0.0) 0.07 0.59
(0.0.0.55.0.45) (0, 0.88. {] 12.0) 0.25 0.29
(0.0.1.0) (0.1.0.0) —0.12 0.36
(1.0.0.0) (1.0.0.0) 1.2 0.64
(0.0.0.1) (0,0.1.0) 0.6 0.6

It looks like the best Nash for each player is to shoot at 10 paces.
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Summary of Methods for Finding Mixed
Nash Equilibria

@ Equality of payoffs. Suppose that we have mixed strategies X * = (x,...,x,)
and Y (Y1s.. .. Ym ). For any rows k. ko, ... that have a positive prob-
ability of being used, the expected payoffs to player I for using any of those
rows must be equal: Ej(k,..Y") = Ei(ks,Y") = Ey(X™*,Y"). You can find
Y'* from these equations. Similarly, for any columns j that have a positive
probability of being used, we have Ey (X *, j,.) = En(X*, js) = En(X*,Y™*).
You can find X * from these equations.

@ You can use the calculus method directly by computing

n—1
1, a1, Y1y e s Um—1) = :r1.---t:sz'-n—1*l—E zi | A

1=1
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Summary of Methods for Finding Mixed

NaSh EqU|||br|a (cont’d)

and then
df -

0, 7=1.2.....n—1.
Jx; ' J

This will let you find Y *. Next, compute

mn—1

g(;x:],...,:1:,_.,_1._3,:1._..,,-ym_|)— (IH......iﬂnl.l E I;

i—1

and then

¢ o
,—';z[}. 17=12,..., m — 1.
dy;

From these you will find X .
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Summary of Methods for Finding Mixed
NaSh EqU|||br|a (cont’d)

@ You can use the system of equations to find interior Nash points given by

m

Y yjlax; — an;] =0, k=1,2.....n—1

=1

Z z;[bis — bim| = 0. s=1,2,....,m—1.
1=1
n—1 m—1

Tp=1-— Z:J:,-. Ym = 1 — Z Y-
j=1

1=1
@ In the 2 x 2 case you can find the rational reaction sets for each player and
see where they intersect. This gives all the Nash equilibria including the pure
ones.

@ Use the nonlinear programming method: set up the objective, the constraints,
and solve. Use the option initialpoint to modify the starting point the
algorithm uses to find additional Nash points.
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Choosing Among Several Nash Equilibria 4



Choosing Among Several Nash Equilibria

e Criteria for choosing among several Nash equilibria
— Stability (example 3.14)
— Evolutionary stable strategy (example 3.15)
— Risk (example 3.16)



Example 3.14

* Let's carry out the repeated best response idea for the two-
person zero sum game

— Noticethat v+ = v~ = 1 and we have a saddle pointat X' * = (1.0.0),
Y* = (0.1.0).

— Procedure: We start with any strategy, say, for player Il. Then we
calculate the best response strategy for player | to this first strategy,
then we calculate the best response strategy for player Il to the best
response for player |, and so on.



Example 3.14 (conta)

— Suppose that player Il starts by playing column 3. The table
summarizes the sequence of best responses:

Best response Strategy for I ~ Best response Strategy for I Payoff to |
_Slcp 0 Column 3 (Start) Row 3 4
Step | Column 2 Row 1 I
Step 2 Column 2 Row | |

— We have arrived at the one and only saddle point of the matrix,
namely, | plays row 1 and Il plays column 2.

— This convergence to the saddle point will happen no matter where we
start with a strategy, and no matter who chooses first.

— This is a really stable saddle point. Because it is the only saddle point?
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Example 3.14 (conta)

* Here is a matrix with only one saddle but the best response
sequence doesn't converge to it:

e
by |

3

4 5

3 06

— Thevalueis v(A) = 4, and there is a unique saddle at row 2 column
2. Now suppose that the players play as in the following table:

Best response Strategy for I Best response Strategy for |

Step 0 Column 1 Row 1|
Step 1 Column 3 Row 3
Step 2 Column | Row 1

— Only starting with row 2 or column 2 would bring us to the saddle.
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Example 3.15

e Consider the bimatrix game (assume a > b.c > 0 ):

{ (—a,—a) (0,-b) ]
(=b,0) (-~c¢,—c) |’

— We have two pure Nash equilibria at (—b,0) and at (0. —b).
— Calculate

Ei(z.y)=(x1—x)

a 0 Y
: = —QyT — z)|[(b — c): :
b _(l {1 7 _-3;] ayr — (1 — z)[(b— )y + |

OF,(x.y) c
Jxr (a—b+cly+c Y a—b+ e
ET
— Similarly. © = ‘
imuarly, x u——b—|—{j‘
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Exa m p|e 3 . 15 (cont’d)

"
o wesee that we also have a mixed Nash equilibrium
a-— 0 c

— Defining h =
at X = (h,1 - h)=Y.

— Here is the table of payoffs for each of the three equilibria:

E\(z,y) Ea(z,y)
r=0y=1 —b 0
r=1,y=0 0 —b
r=h,y=~h 2 Z

where z = FE (h.h) = —h*(@a — b+ ¢) — h(b — 2¢) — c.
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Exa m p|e 3 . 15 (cont’d)

— Suppose a = 3,b = 1,¢ = 2. Then h = % gives the mixed Nash

equilibrium X =Y = (é %). These are the payoffs:

Equilibrium Payoff tol Payoffto II
r=1,y=0 0 —1
r=0,y=1 —1 0

— Without knowing the opponent's choice, they will end up playing
( =1,y = 1), resulting in the nonoptimal pay off
Ei(1,1)=—-3=E5(1.1).

* |f there are many players playing this game whenever two players encounter each
other and they each play nonoptimally, they will all receive less than they could

otherwise get.
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Exa m p|e 3 . 15 (cont’d)

— If one of the player realizes that, he may decide to switch to play
x = 0 for player I, or y = 0 for player Il. Then he will receive -1,
instead of —3.

— But other players would reach this conclusion as well. Consequently
others also start playing = = 0 or y = 0, and now we move again to
the nonoptimal play * = 0,y = 0, resulting in payoffs —2 to each player.

— If this reasoning is correct, then we could cycle forever between
(r = 1,y = 1) and (z = 0,y = 0), until someone stumbles on trying

z=h=%. Then, Ei(3.0) = —1 and E»(3.0) = —3.

— Eventually, everyone will see that % is a better response to 0 and
everyone will switch to h = % with payoff — E‘
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Exa m p|e 3 . 15 (cont’d)

— Notice that since E;(z. 5) = E»(3,y) = —32 for any x,y, no strategy
chosen by either player can get a higher payoff if the opposing player
chooses p = L.

* Oncea pIaye; hits on using r = 1 or Yy = : the cycling is over.
— This Nash equilibrium 2 — y = 1 isthe only one that allows the

players to choose without knowiﬁg the other's choice and then have
no incentive to do something else. It is stable in that sense.

— This strategy is called uninvadable, or an evolutionary stable strategy,
and shows us, sometimes, one way to pick the right Nash equilibrium
when there are more than one.



Example 3.16

Entry Deterrence. There are two players producing gadgets.
Firm (player) A is already producing and selling the gadgets,
while firm (player) B is thinking of producing and selling the
gadgets and competing with firm A. Firm A has two strategies:
(1) join with firm B to control the total market, or

(2) resist firm B and make it less profitable or unprofitable for
firm B to enter the market. Firm B has the two strategies to

(1) enter the market and compete with firm A or
(2) move on to something else.

Here is the bimatrix: A/B Enter Move on

Resist | (0, —1) (10,0)

Join (5, 4) (10, 0)




Exa m p|e 3 . 16 (cont’d)

— There are two pure Nash equilibria:
}L'; - [].“_‘F.f} = Li'[.;l. i}
Xo = (0,1),Ys = (1,0)

with associated payoffs

{I]B[) — '[I““] {:1-3.83} (-'_}. ”
— Without knowing the opponent's choice, they will play
X = (1,0),Y = (1,0) with the result that A gets 0 and B gets -1.

— In the previous example we did not account for the fact that if there is

any positive probability that player B will enter the market, then firm A
must take this into account in order to reduce the risk.
* From this perspective, firm A would definitely not play resist.




Exa m p|e 3 . 16 (cont’d)

— Economists say that equilibrium X5.Y> risk dominates the other
equilibrium and so that is the correct one.

— A risk-dominant Nash equilibrium will be correct the more uncertainty
exists on the part of the players as to which strategy an opponent will

choose.
* The more risk and uncertainty, the more likely the risk-dominant Nash equilibrium
will be played.



Pareto-Optimal and Payoff-Dominant

e Definition 3.5.1 Given a collection of pavoff functions

[_”1{*?1 ----- q”}“-””u((h ----- rfn))

foran n—person nonzero sum game, where the q; is a pure or mixed strategy for player
r=1.2..... n, we say that (qj. ..., q. ) is Pareto-optimal if there does not exist any
other strategy for any of the plavers that makes that player better off, that is, increases
her or his pavoff, without making other plavers worse off, namely, decreasing at least
one other plaver’s pavolff.

— In the Entry Deterrence example, (5. 4) is the Pareto-optimal payoff point

If either player deviates from using .X5. Y5, then at least one of the
two players does worse.
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Pareto-Optimal and Payoff-Dominant (contq)

— On the other hand, if we look back at the prisoner’s dilemma problem
at the beginning of this chapter we showed that (-5,-5) is a Nash
equilibrium, but it is not Pareto-optimal because (-1,-1)
simultaneously improves both their payoffs.

Definition 3.5.2 A Nash equilibrium is payoff-dominant if it is Pareto-optimal com-
pared to all other Nash equilibria in the game.
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Payoff-Dominant and Risk-Dominant

 Here is an example, commonly known as the stag hunt game:

‘ Hunt  Gather

Hunt | (5,5) (0,4)

Gather | (4,0) (2.2)

— This is an example of a coordination game. If the players can
coordinate their actions and hunt, then they can both do better.

— The following table summarizes the Nash points and their payoffs:

r 2 1 r n 10
s‘ilz(ﬁeg):‘h II'-*I:? Eu——;r

,Xg — ([L ].) = 't) H] = 2 En = 2

.‘fg = (10) = ‘!’g \ .{.‘;-'| =9 E[] =D
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Payoff-Dominant and Risk-Dominant (conta)

e Payoff-dominant

— The Nash equilibrium X3, Y3 is payoff-dominant because no player can
do better no matter what.

e Risk-dominant

— The Nash equilibrium X5, Y5 risk dominates X3, Ys;i.e.,
(gather,gather) risk dominates (hunt,hunt).
— The intuitive reasoning is that if either player is not absolutely certain

that the other player will join the hunt, then the player who was going
to hunt sees that she can do better by gathering.

— Both players play gather in order to minimize the risk of getting zero.



